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A REAL-TIME ICONIC IMAGE PROCESSOR
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ABSTRACT

The Sensory-Interactive Robotics Group at the National Bureau of
Standards is producing PIPE, a pipelined image-processing engine,
for rescarch in low-level machine vision. PIPE processes sequences
of images at field rates through a series of point and neighborhood
operations. It is divided into a variable number of identical stages,
each of which performs an independent set of operations on the
image data stored in the stage. A stage control unit determines the
sequence of operations performed within a stage on each image.
This scquence is easily modified by a host computer during the
inter-ficld interval when all of the stage control units can be totally
reconfigured.

Images flow through PIPE in several ways. In addition to the (stan-
dard pipeline) "forward” pathway, where an output image is sent
to the next stage, an output image can also be sent to the same
stage via a "recursive” pathway and to the previous stage via a
"retrograde” pathway. As a result, PIPE can support relaxation
operations, temporal neighborhood operations, and other local
operations.

Several processing modes are available in PIPE in addition to the
usual "SIMD” mode of pipelined processors. In an "MIMD” mode,
one of several operations is performed on a region of interest which
can be defined by the host device or by previous image operations.
PIPE also supports variable resolution pyramids where an image is
compressed or expanded as it passes between stages.

INTRODUCTION

PIPE was designed as a preprocessor for iconic {spatially indexed)
images. It is intended to serve as a "front-end” for the vision por-
tion of a multi-modal sensory processing system being developed
for real-time robot guidance applications at NBS. Its role is to per-
form transformations on images to extract features similar to those
in the primal sketch of Marr(1976). These features make intensity
changes and local geometric relations explicit in images, while
maintaining the spatial representation. In this, PIPE differs from
many processors designed for image-processing. These other proces-
sors are usually designed to perform both local and global image-
processing tasks, often in an interactive environment. Pipe, how-
ever, is intended to perform only local operations. Several goals

Commercial equipment is identified in this paper in order to ade-
quately describe the systems that were developed. In no case does
such identification imply recommendation by the National Bureau
of Standards, nor does it imply that this equipment was necessarily
the best available for the purpose. This paper was prepared in
conjunction with the official duties of United States Government
employees, and is not subject to United States copyright.

U.S. Government Work. Not protected by
U.S. copyright.
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influenced the design:
(1) Real-time processing of images at field rates.

(2) Provision for interactions between related images, such as
those arising from dynamic image sequences or from stereos-
copic views.

(3) Ability to apply different algorithms to different image
regions in real time.

(4) Ability to guide processing by knowledge-based commands
and "hypothesis images” supplied by the host.

This paper introduces the reader to PIPE and its capabilities. A
more detailed discussion of PIPE can be obtained in (Kent et. al.,
1984).

OVERVIEW OF PIPE

PIPE was designed as a preprocessor for iconic images. Figure 1
shows how PIPE fits into the NBS image-processing system. It
acquires images from a variety of sources, such as analog or digital
television cameras, ranging devices, and conformal mapping arrays.
It processes sequences of images in real time, through a series of
local neighborhood and point operations and presents its output to
such devices as monitors, robot vision systems, iconic-to-symbolic
mapping devices and image-processing host computers. In essence,
PIPE performs local operations and presents the results to other
processors which can perform global operations.

PIPE features three, concurrent, interacting, image-flow pathways.
These interconnect a variable number of identical modular image-
processing stages. These stages are sandwiched between special
purpose input and output boards which provide a clean interface
with devices outside PIPE. The three pathways are: the "forward”
pathway, which acts as a traditional pipelined image-processing
path; the "retrograde” pathway, which carries images in the oppo-
site direction, i.e., from the output of a stage to the input of its
predecessor; and the "recursive” pathway, which carries an image
from the output of a stage back into the input of the same stage.
Figure 2 shows the connections of the processing stages, the three
image-flow pathways, and the stage control units which store the
sequence of operations for each stage.

Processing in PIPE involves point operations and neighborhood
operations on the image data stored in a stage. The point opera-
tions are performed in look-up tables and in ALUs at various
points in PIPE. Each stage can perform two simultaneous and
independent arithmetic or Boolean neighborhood operations on the
data stored within the stage. The results from these operations can
be sent on any of the image-processing pathways previously
described. In an alternative mode, neighborhood operations may be
modified on a pixel-by-pixel basis using information stored in
another buffer to choose between several different algorithms.

PIPE allows the construction of multiresolution, ”"pyramid”,
sequences of images. Pyramids have been found useful in a large
number of image-processing applications (Shneier, 1983, Tanimoto,
1984). They have an added utility in a strictly local processor like
PIPE because they allow information from spatially distant regions



to be made local. The basic operations available in PIPE for con-
structing image pyramids are sampling and pixel doubling. Sam-
pling is used to reduce the resolution of an image, while doubling is
used to increase the size of an image. Multi-resolution processing in
pipe is discussed in greater detail in (Kent et. al., 1984).

The problem of programming PIPE involves assigning the resources
of each stage at each field time. The internal architecture of a
stage in PIPE is shown in Figure 3. While accurate, this diagram
does not reflect the way in which PIPE is programmed. An alterna-
tive representation is shown in Figure 4. It is this schematic
representation of a stage which will be used as a programming aid.
1t has four distinct sections, which are connected by switching net-
works. At the top of the figure there is an input section, and below
this are two image buffers. Next come the neighborhood operations,

followed by the output processing. The final switching network
routes the outputs to the wildcard busses and/or to the three out-
put paths. Each section is discussed below.

The three boxes across the top, from left to right, represent func-
tions of onc argument {lookup tables) to be applied to the "for-
ward”, "recursive”, and "backward” input pathways, respectively.
Using a lookup table in the input path permits both arithmetic
functions (e.g. square root, tangent, etc.) and Boolean operations
(e.g. shift, nand, etc.) to be performed on the input data before it
is combined. Whatever functional transformation is employed dur-
ing a given cycle will be shown in the appropriate box in the exam-
ple presented below. These functional transformations, which occur
simultancously, lead to a single box representing a combining func-
tion to be applied during the cycle to the three input paths. This
function is performed by an ALU and can be any arithmetic or log-
ical combination of the three inputs.

[n section 2 there is a crosspoint matrix for switching the inputs
between two image buffers labeled X and Y, each of which stores a
256 x 256 pixel image with 8 bits of resolution. There are three
possible inputs and two possible outputs. Two of the inputs arise
from the wildcard busses (marked VBUSA and VBUSB), while the
third is the output from the combining function. Any of the inputs
can be stored in buffer X at the same time that the same or
another input is stored in buffer Y. The image buffers are
represented by the boxes immediately below the switch.

Below the image buflers is another switch that selects which of the
buffers will serve as the input to the neighborhood operators of sec-
tion 3. Only one image buffer can be used as the source [or the
neighborhood operators. Notice that the output from either image
buffer can be routed both to the neighborhood operator and to
points further down in the stage (bypassing the neighborhood
operator). The terminals in the switching networks in these cases
are marked appropriately, although the lines connecting them to
their sources are not shown. Thus, for example, the output of the X
image buffer may be used unchanged at all points marked X.

The buffer selected for neighborhood processing passes first through
a lookup table (in the center of the figure) and then through both
the neighborhood operators (NOP1 and NOP2). The outputs from
these operators are marked as 1 and 2, respectively. The neighbor-
hood operators may be arithmetic or Boolean functions and are
completely independent. At present, the neighborhood size is 3 x 3
pixels and the result of each neighborhood operation is completed
within 200 ns in order to keep up with the ficld rate of the input
device.

A "region of interest” operator allows each stage to switch between
the normal (NOP1, NOP2) operation set and alternative (NOP1’,
NOP2’) operation sets on a pixel-by-pixel basis. In this mode, the
other image buffer of the stage contains a map of the operations to
be performed on homologous pixels of the image buffer undergoing
operations. Potentially, up to 256 different alternative operation
sets could be specified by the eight bit contents of each pixel in the
map. In practice, the number of alternative operation sets select-
able during a field processing time is limited by the amount of
memory available within the stage to store them, which may be
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enlarged at will. The operation sets stored in the available memory
may be changed arbitrarily between fields. This allows earlier
image operations, such as edge detection, to guide later processing.

Following the neighborhood processing, another switching matrix
selects the inputs to two functions of two arguments. Any of the
outputs from the neighborhood operators or the image buffers can
serve as inputs to the functions. The box on the left represents an
arithmetic operation, performed on a pixel-by-pixel basis using an
ALU. The box on the right represents a twelve-bit lookup table.
The input is twelve bits selected from any two eight-bit inputs in a
manner chosen by the programmer. By choosing eight bits from
one argument and setting the remaining four bits to "don’t care”
values in the table, a function of one input can be implemented.

The final output of the stage is selected from the contents of the X
and Y buffers, from the outputs of both neighborhood operations,
and from the results of both functions of two arguments. The out-
puts can be routed to the two wildeard buffers, shown on the right
of the figure, and to the "backward”, "recursive”, and "forward”
data paths from the stage, shown left to right at the bottom of the
figure. The only restriction is that two different data streams can-
not be routed to the same output path.

Throughout the programming example presented below, a blank
box will represent an inactive operation. A simple pass-through
operation will be denoted by the unity function, U. In practice
many functions shown in these examples as unitary or clementary
functions will be modified to provide rounding or scaling operations
as required for optimal computation accuracy. Since the functions
are derived from table lookup, these incidental computations may
be inserted automatically from a compiler library, and remain tran-
sparent to the user.

A backward-chaining production system is being used to program
PIPE at the high level. This program, written in PROLOG, is
given a description of the desired algorithm as an AND/OR graph.
1t then ascertains which operations must occur in the specific sec-
tions of a stage in order to satisfy the constraints imposed by the
algorithm. In classic production system form, it tries a solution and
if it fails, it backtracks and tries another way. Preliminary results
indicate that a Sobel edge operator solution can be generated on a
VAX 11/780 at the rate of one per second. (Clearly, there arolu-
tions.) Once this high level assignment is made, a simulator, also
under construction, will be useful in debugging the program. Since
the assignments of stage resources has a one-to-one correspondence
with the microcode that is stored in the stage control units, the
PROLOG program can be easily assembled into the code required
to run PIPE.

PROGRAMMING PIPE -- THE SOBEL OPERATOR

PIPE can be used for any image-processing task which can be per-
formed using a 3 x 3 neighborhood convolution window. An exam-
ple of such an algorithm is the Sobel edge operator which calcu-
lates an approximation of the gradient G(r,c) and its associated
direction ¢(r ,c ) for each row(r) and column{c) pixel in the image.
Formally,

Ii(r,c)=I{r,c)*C,
I(r,e)=I(r,c)*C,
G(r,c )=\/11§ +12!

&r,c)=tan"V(I,I,)

-101 1 21
where C,=1-202] and C,=| 0 0 0| and * denotes the con-
-101 ~-1-2-1
r.

volution operato



The program is shown in Figure 5 using the stage schematic
described above. In order to illustrate how new images are inserted
into PIPE, the above notation needs to be modified slightly. The
first input image will be labeled I, and the next input image will
be denoted as I,. All of the intermediate images required for the
algorithm will carry an extra subscript indicating the source image.
This is important because the second input image can be inscrted
into PIPE before the first image has been fully processed.

In the first row, the first input image I, enters the Y image buffer
of stage 1. The neighborhood operator C, is performed for every
neighborhood in I, and the result, I, is passed to stage 2 through
the "forward” pathway where it is stored in the X buffer. Since
there is no specification for the Y buffer of stage I, the input image
remains unchanged in that buffer.

The second row calculates the convolution of the original image
with the C, operator. The result of this operator, I,,, is passed to
stage 2 through the "forward” pathway where it is stored in the Y
buffer. It is also sent through the "recursive” pathway of stage 1
and is stored in the Y buffer. This overwrites I, but this is no loss
because the input image is no longer needed.

In the third row, the angle of the gradient is calculated using the
function of two variables lookup table set up for tan™(I, I,). This
angle is sent out the "forward” path. Simultaneously, the I, buffer
is sent out the "recursive” pathway.

The fourth row uses the input lookup tables to square the inputs
from the "forward” and "recursive” inputs. These inputs are then
added in the ALU and stored in the Y buffer. After the square root
of this quantity is taken in the final lookup table, the estimate of
the gradient G, is available. Simultaneously, the next input image
I, overwrites the Y bufler of stage 1 and the pipelined process con-
tinues on the next image.

For the first image, four cycles are needed. However, for all subse-
quent images, only three cycles are required because the first cycle

of the current image is processed simultaneously with the fourth
cycle of the previous image.

There may be some question concerning the host computer’s ability
to accept output images at the rate shown in this example (roughly
200 ns per pixel). For this example, there is no problem because the
Sobel operator would probably be used as a preprocessing step for
further processing in PIPE. If this were not the case, then the
result could be sent to the host through the DMA channel at a
suitably lower rate.

It is interesting to compare the processing capabilities of PIPE with
the sequential techniques used in von Neumann computer architec-
tures. To perform the Sobel operator for an n x m pixel image
requires 19nm additions, 18nm multiplications, and 3nm lookups.
Assuming that each operation takes the same amount of time and
that each image has the RS-170 standard of 256 x 240 pixels, the
total number of operations is 40nm = 2.46 Mops. For PIPE, the
amount of time required (after the initial image) is three field
times, i.e. .05 seconds. Consequently, a von Neumann type com-
puter must operate at 49.2 Mops/second to keep up with PIPE in
this application.

RELATED WORK

PUMPS (Briggs et al., 1982) is an example of a multi-user system
in which various task processing units are allocated from a pool.
Each processor is specialized for a particular purpose, and images
are transformed by passing them through a sequence of different
processors. PIPE, on the other hand, consists of a sequence of
identical stages, each of which has the power to perform several
different operations on images. The programmer has the responsi-
bility of specifying the task of each stage to ensure that the desired
goal is attained. PIPE is also dedicated to a single user, although
pipelines are easily constructed from s set of identical components,
allowing each user to have a specially tailored PIPE system. In
fact, a set of PIPE processors could be added to the pool of avail-
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able processors in PUMPS, and used as a resource in the same way
as the other processors.

Several other systems have components that perform some of the
functions of PIPE. Usually, however, they operate on a single
image at a time. For instance, the PICAP II system (Antonsson, et
al., 1982) has a filter processor, FIP, that performs some of the
operations of a stage in PIPE. It also has other processors that are
specialized for operations such as image segmentation. FLIP
(Luetjen et al., 1980) is similar to PIPE in that it has a number of
identical processors, but it usually uses these processors in parallel
on subimages of the same image instead of on successive versions of
complete images. FLIP also allows greater flexibility in the connec-
tions between its processors. In PIPE, processors are normally con-
nected only to their immediate predecessors and successors,
although the wildcard busses allow selective but limited connec-
tions between arbitrary stages. FLIP, on the other hand, provides
connections between all processors, allowing the processors to be
arranged to suit each particular task.

Other special processors for image-processing include the massively
parallel processor, MPP (Potter, 1983), and ZMOB (Kushner et al,,
1982), which is a more general parallel processor but has been stu-
died extensively with regard to its abilities to perform image-
processing tasks. MPP has 16K processors, and is a true parallel
processor. Experience with the processor is limited, but a major
difficulty appears to be the problem of transferring the data to
each individual processor, and getting the results out of the
machine. MPP does not have a true neighborhood operator,
although each processor can be connected to four of its neighbors
and use the pixel values there to compute its result. It is not clear
that MPP has any advantage over pipelined systems, because
images are usually obtained from an imaging system or storage
medium in a stream, and sent to successive processors in the same
fashion.

7ZMOB consists of 256 processors connected by a ring-shaped high
speed communications system. The communications link operates
fast enough to make cach processor appear to be connected to all
others. Each processor is a general-purpose eight bit microcom-
puter, with 64K bytes of memory. Thus, many different computa-
tions can be performed at the same time, either on the same or
different data. For image-processing applications, images are
usually broken into parts, each of which is sent to a different pro-
cessor. Many operations require interactions between the parts,
especially when neighborhood operations are performed. This gives
rise to the need for communications between processors. Given that
the communications link is much faster than the processors’ cycle
time, there is very little overhead involved. But upgrading the pro-
cessors might cause data transmissions to become significant. While
PIPE is clearly less powerful than ZMOB, it is better suited to its
role of low-level image processing.

A recent survey by Reeves (1984) divides image-processing tasks
into two classes. Low level image-processing usually modifies parts
of images, but maintains the image array. Higher level processing,
however, works on symbolic representations of the contents of
images. Low level processing has usually given rise to architectures
based on single instruction stream, multiple data stream (SIMD)
structures. The higher level functions are usually carried out using
processors based on multiple instruction stream, multiple data
stream (MIMD) structures. The design of PIPE allows it to act as a
SIMD pipeline, or as a (restricted) MIMD pipeline. The MIMD
mode is entered whenever the region-of-interest operators are used.

Cellular architectures have been used in several systems: CLIP4
(Duff, 1976), systolic arrays (Kung, 1982), and the cytocomputer
(Sternberg, 1979). These architectures operate on images using
simple, logical operations. As a result of this simplicity, many pro-
cessors can be integrated onto a single chip.

In CLIP4, a processor is placed at each pixel location of the image.
Currently, a 96 x 96 array of processors has been implemented. It
performs neighborhood operations with the 8 neighbors of a pixel
as well as point operations on the pixel itself. The output of each



processor can be stored in the processor, when it is a partial result,
or it can be propagated to any of its neighbors. While CLIP4 can
process 96 x 96 pixels in parallel, processing larger images would
appear to incur large I/O delays. PIPE, with its pipelined struc-
ture, can perform the funclions of CLIP4 as well as many others
because its richer interconnection network permits both spatial and
temporal pixel combinations. Furthermore, since the image is usu-
ally obtained from a camera, it is difficult to take advantage of the
parallel nature of CLIP4.

Systolic arrays (Kung, 1982) balance computation speed with 1/0
limitations by interconnecting a set of cells, each capable of some
simple operations, in a regular pattern. The salient characteristic of
systolic arrays is that input data as well as (partial) result data
flow through the system. In pipelined systems, such as PIPE, only
results flow. In spite of this diflerence, the architectures have a
great deal in common. Systolic arrays are built from generic build-
ing blocks for specific applications. In a similar fashion, the number
of stages in PIPE is application dependent. Also, systolic arrays
and PIPE share the concept of having very regular interconnection
structures. In PIPE, however, the "wildcard” buflers offer greater
interconnection flexibility.

A processor that has many features in common with PIPE is the
cytocomputer (Sternberg, 1979). This machine performs neighbor-
hood and table-lookup operations, but lacks most of the other
features of PIPE. It does not have the "retrograde” or "recursive”

data paths, has no region-of-interest operators, and cannot perform
multi-resolution image-processing. Neither can it combine more
than one image in an operation. Even without these features, how-
ever, the cytocomputer has shown itself to be extremely useful for
low level image processing.

CONCLUSIONS

This paper has described a2 new image preprocessor, consisting of a
sequence of identical stages, each of which can perform a number
of point and neighborhood operations independently. An important
feature of the processor is the provision of forward, "recursive”,
and "backward” paths to allow image data to participate in tem-
poral as well as spatial neighborhood operations. The "backward”
pathway also allows expectations or image models to be inserted
into the system by the host. These expectations can then partici-
pate in the processing in the same way as images acquired from the
input device. The region-of-interest operator is also a powerful, and
unique, feature of PIPE, allowing the results of feature-extraction
processes to guide further image analysis. PIPE also provides a
multi-resolution capability, enabling global events to be made
local. This is important in a machine that has only local operators.
Much research needs to be done to explore the capabilities of the
system, but early experiments indicate that the system will have a
wide range of applications in low-level real-time image-processing.
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